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a b s t r a c t 

Adult cortex is organized into distributed functional communities. Yet, little is known about community archi- 
tecture of children’s brains. Here, we uncovered the community structure of cortex in childhood using fMRI data 
from 670 children aged 9–11 years (48% female, replication sample 𝑛 = 544 , 56% female) from the Adolescent 
Brain and Cognitive Development study. We first applied a data-driven community detection approach to clus- 
ter cortical regions into communities, then employed a generative model-based approach called the weighted 
stochastic block model to further probe community interactions. Children showed similar community structure 
to adults, as defined by Yeo and colleagues in 2011, in early-developing sensory and motor communities, but 
differences emerged in transmodal areas. Children have more cortical territory in the limbic community, which is 
involved in emotion processing, than adults. Regions in association cortex interact more flexibly across commu- 
nities, creating uncertainty for the model-based assignment algorithm, and perhaps reflecting cortical boundaries 
that are not yet solidified. Uncertainty was highest for cingulo-opercular areas involved in flexible deployment of 
cognitive control. Activation and deactivation patterns during a working memory task showed that both the data- 
driven approach and a set of adult communities statistically capture functional organization in middle childhood. 
Collectively, our findings suggest that community boundaries are not solidified by middle childhood. 
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The human cortex is made up of distributed functional communi-
ies. Each community is a set of preferentially interacting regions that
an be reliably detected across individuals, and that are co-activated
uring the performance of specific cognitive tasks ( Gratton et al., 2018;
u et al., 2015; Uddin et al., 2019 ). Communities follow a gradient

rom unimodal to heteromodal ( Margulies et al., 2016 ), which aligns
ith a hierarchical gradient of intrinsic timescales, from fast to slow
 Raut et al., 2020 ). Communities comprised of higher-order association
reas are expanded in humans compared to other primates ( Buckner and
rienen, 2013 ), have high expression of genes diverging most swiftly

rom primates in recent human lineage ( Wei et al., 2019 ), and show
igh interindividual variability in adulthood ( Gratton et al., 2018; Kong
t al., 2018; Mueller et al., 2013 ). Dorsal and ventral attention com-
unities are involved in processing and acting on sensory information
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 Corbetta and Shulman, 2002 ). The default community, in contrast, sup-
orts internally-constructed representations of information that cannot
e sensed directly, such as remembering the past, envisioning the fu-
ure, and imagining the minds of others ( Buckner and DiNicola, 2019 ).
he frontoparietal community flexibly coordinates other communities
o meet task demands ( Cole et al., 2013 ), and maintains information
o longer present in the environment ( Owen et al., 2005 ). The clear
rganization of functional communities and their mapping to cognitive
rocesses begs the question of how these communities are organized
uring human development. 

Humans have the longest childhood of all primates. Prolonged cog-
itive immaturity is thought to provide a longer window of sensitivity
o the environment ( Gopnik, 2020; Snell-Rood and Snell-Rood, 2020 ).
fter the first decade of life, humans have still not reached adult levels
f cognitive control or emotion regulation ( Luna, 2009; Pollak et al.,
019 ). However, 10-year-olds have made considerable progress in their
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ognitive development: gains with age in skills like working memory,
nhibition, and reasoning are much steeper before age 10 than after
 Akshoomoff et al., 2014 ). In the brain, by 10 years of age, sensory
ortex is relatively mature, but association cortex continues to mature
hrough adolescence and into adulthood ( Brown and Jernigan, 2012;
ogtay et al., 2004; Stiles and Jernigan, 2010; Whitaker et al., 2016 ).
hite matter connections between cortical regions also mature early

mong sensory areas and later between association areas ( Lebel et al.,
019; Miller et al., 2012 ). Some evidence from a recent study of 9-
nd 10-year-olds suggests that community organization resembles that
f adults ( Marek et al., 2019 ), although their approach only analy-
es strong connections, which may obscure finer-grained distinctions in
till-developing association cortex. From these studies, one might think
hat in middle childhood (ages 6–10 years) children’s brains are orga-
ized more or less like adults. However, it is also true that adolescence
ages 11–19 years) involves major cognitive and neural reorganization
 Cui et al., 2020; Luna et al., 2004 ). Accordingly, one might also think
hat in middle childhood children’s brains are not organized like adults.

To understand the organization of children’s brains in middle child-
ood, network science tools can be used to formalize the brain as a
etwork ( Bassett and Sporns, 2017 ), with brain regions as nodes and
ith correlations in activity, or functional connectivity, as the edges be-

ween nodes. Network analyses of child brain development have shown
ncreased segregation and integration with age, resulting in the even-
ual efficient small-world architecture of adult networks ( Fair et al.,
009; 2007; Grayson and Fair, 2017; Lopez et al., 2019; Tooley et al.,
020 ). However, these studies have largely focused on developmental
rocesses, or employed adult group-level communities to probe changes
n network architecture (e.g., Chen et al. (2020) ). During adolescence,
ge is associated with shifts in the boundaries of functional communities
 Cui et al., 2020 ), suggesting that the cortical patterning of community
oundaries might be quite different in childhood than in adulthood. To
ur knowledge, however, few studies have explicitly compared corti-
al patterns of functional communities in childhood with those found
n adults. Further, it is an open question whether group-level commu-
ity assignments might map to individual children more poorly than in
dults, because of greater interindividual variability in children. Despite
his gap, many developmental studies have applied adult group-level
ommunities, which may lead to incorrect conclusions ( Bijsterbosch
t al., 2018; Li et al., 2019 ), either because children’s brains are not like
dults, or because they are more different from each other ( Gao et al.,
014 ). 

Here, we sought to test whether the patterns and contours of chil-
ren’s group-level cortical functional communities resemble those in
dults as reported by Yeo and colleagues (2011) . Further, we also exam-
ned whether differences occur, as we predict, more in higher-order asso-
iation cortex than sensory areas. We first employed a widely-used data-
riven approach developed by Yeo et al. (2011) to cluster points on the
ray matter surface based on their patterns of connectivity to the rest of
he brain, and compared our results to the adult partition. The resulting
evelopmental partition raised further questions about the origins of dif-
erences in community assignment. Were they due to changes in interac-
ions between specific systems, or broader differences in patterns of con-
ectivity across all other functional communities? To probe these inter-
ctions and the reliability of community assignments, we turned to the
eighted stochastic block model (WSBM), a generative model-based ap-
roach developed by Aicher et al. (2015) . The WSBM explicitly models
nteractions both within and between communities, attempting to parti-
ion communities such that nodes with similar patterns of connectivity
re grouped together. The WSBM assumes that the weight and prob-
bility of a connection between two nodes is governed by parameter-
zed generative processes, depending only on the communities to which
odes are assigned, and thus also has the biologically-motivated assump-
ion of fewer organizing principles than the data-driven approach, which
oes not constrain the specific way communities are connected to each
ther. Thus, the WSBM might align better with large-scale brain organi-
2 
ation, and it provides a greater flexibility and sensitivity to detect a di-
erse set of network architectures ( Betzel et al., 2018a; 2018b ). In each
pproach, we examined regions of high and low certainty in commu-
ity assignment. Finally, we tested which of the community structures
est reflected functional activation. We chose a task with strong pat-
erns of activation and deactivation in association cortex communities,
he n-back task, to test the relationship between children’s community
opography and their patterns of task-related BOLD signal. 

ethods 

articipants 

Data are from 670 children in the Adolescent Brain Cognitive De-
elopment (ABCD) study at the first time point (Release 2.0.1), be-
ween the ages of 9 and 11 years ( 𝑀 = 9 . 94 , 𝑆𝐷 = 0 . 67 , 47 . 61% female)
 Volkow et al., 2018 ). Children were recruited from schools at 21 sites
cross the United States of America. All ABCD study protocols were ap-
roved by a central Institutional Review Board (IRB) at the University of
alifornia, San Diego ( Casey et al., 2018 ). Due to known scanner effects

n the ABCD study ( Casey et al., 2018; Marek et al., 2019; Nielson et al.,
018 ), we selected a subset of children from one Siemens scanner at
ne site who had at least one usable T1-weighted (T1w) image (passed
BCD’s Freesurfer visual assessment checks), had 2 or more resting-
tate functional magnetic resonance imaging (fMRI) runs with aver-
ge framewise displacement < 0 . 5 mm and < 50% of volumes > 0 . 2 mm
 Power et al., 2012 ), and had an average framewise displacement over
ll runs < 0 . 2 mm, after correcting for respiratory artifacts ( Fair et al.,
020 ). These parameters were chosen to ensure that we could retain as
any participants with high-quality resting-state data as possible, while
inimizing the effect of motion on our analyses. Participants were 84%
hite, 9% Hispanic, 6% other, < 1 % Black, and < 1 % Asian. Average
arental education ranged from 7 to 20 years ( 𝑀 = 15 . 41 , 𝑆𝐷 = 1 . 88
ears, 52% with bachelor’s degree or higher education). 

Replication data are from 544 children from two ABCD sites be-
ween the ages of 9 and 11 years ( 𝑀 = 10 . 2 , 𝑆𝐷 = 0 . 53 , 55 . 7% female).
oth sites used Siemens scanners. All replication sample participants
et the above imaging data quality criteria. Replication sample par-

icipants were 74% white, 15% Black, 8% other, 3% Hispanic, and
 1 % Asian. Average parental education ranged from 10 to 20 years
 𝑀 = 15 . 36 , 𝑆𝐷 = 2 years, 48% with bachelor’s degree or higher educa-
ion). 

mage Acquisition 

The ABCD scan session included T1w and T2-weighted (T2w) im-
ges, one dMRI series, four 5-minute resting-state fMRI series, and three
ets of two task fMRI series. One set of two 5-min resting-state fMRI runs
s acquired immediately after the T1w scan and another set is acquired
fter the T2w scans, followed by task fMRI runs. Resting-state data were
cquired with eyes open during passive viewing of a cross hair. The T1w
cquisition (1 mm isotropic) is a 3D T1w inversion prepared RF-spoiled
radient echo scan using prospective motion correction ( Tisdall et al.,
012 ). The fMRI acquisitions (2.4 mm isotropic, TR = 800 ms) use multi-
and echo-planar imaging with slice acceleration factor 6. Details about
BCD image acquisition are available elsewhere ( Casey et al., 2018; Ha-
ler et al., 2019 ). 

ata quality and exclusion criteria 

Due to the nature of the ABCD Fast Track data, which enables almost
mmediate access to the raw images from this study, there are occasional
rrors in data quality or subject ID assignment. We excluded any partici-
ants from the target site whose data on Amazon S3 was incomplete as of
pring 2019 or whose data contained sequences not officially part of the
BCD study. We also excluded participants with an average framewise
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isplacement over all runs > 0 . 2 mm, after correcting for respiratory
rtifacts ( Fair et al., 2020 ). Runs of resting-state fMRI that contained
 360 volumes or where quality metrics indicated poor coregistration

cross-correlation or Jaccard coefficient between fMRI and T1w image
 0 . 95 , mincost of bbregister > 0 . 6 ) were excluded, as were runs
ith average framewise displacement > 0 . 5 mm ( Power et al., 2012 ).
ollowing preprocessing, runs with > 50% of volumes flagged as out-
iers for average framewise displacement > 0 . 2 mm were removed from
nalyses, following recent exclusion criteria documented for the GSP
ata ( Kong et al., 2018 ). Any subjects with less than 2 runs of resting-
tate fMRI data remaining after these exclusions were not included in
nalyses. Although all choices of motion exclusion criteria necessarily
nvolve a tradeoff between generalizability and quality assurance, we
imed to understand community structure in a way that is represen-
ative of children of this age. These parameters were chosen to ensure
hat we could retain as many participants with high-quality resting-state
ata as possible while minimizing the effect of motion on our analyses.
verage framewise displacement across runs in the original dataset is
.15 mm ( 𝑆𝐷 = 0 . 06 ), average framewise displacement across runs in
he replication dataset is 0.16 mm ( 𝑆𝐷 = 0 . 06 ). 

ignal to noise ratio 

To estimate the effects of susceptibility artifacts on the child data,
e calculated the voxel-wise temporal signal to noise (SNR) ratio in

he child dataset. Following Yeo et al. (2011) and the GSP dataset
 Holmes et al., 2015 ), we computed the SNR of the fMRI time series for
ach voxel in subjects native volumetric space after preprocessing with
MRIPprep by averaging the signal intensity across the whole run and di-
iding it by the standard deviation over time. SNR maps were averaged
cross runs, then projected to fsaverage5 surface space and averaged
cross subjects. Low SNR is present in expected areas, namely, the an-
erior portion of the inferior and medial temporal lobe, as well as areas
f orbitofrontal cortex (see Supplemental Figure S3). The child dataset
as acquired with a multiband factor of 6 and a TR of 800 milliseconds,

o as expected, average overall SNR is qualitatively lower in the child
ataset than in the adult dataset (acquired without slice acceleration
nd a TR of 3000 milliseconds, Supplemental Figure 3a,b) ( Preibisch
t al., 2015; Smith et al., 2013 ). We employed publicly released adult
NR maps from Yeo and colleagues (2011) ) for comparison with the
hild SNR data. 

reprocessing 

Results included in this manuscript come from preprocessed
ata, where the preprocessing was performed using fMRIPprep 1.4.1
( Esteban et al., 2018b ); ( Esteban et al., 2018a ); RRID:SCR_016216),
hich is based on Nipype 1.2.0(( Gorgolewski et al., 2011 );
 Gorgolewski et al., 2018 ); RRID:SCR_002502), as well as XCPEngine
.0 ( Ciric et al., 2018 ). 

The T1-weighted (T1w) image was corrected for intensity non-
niformity with N4BiasFieldCorrection ( Tustison et al., 2010 ),
istributed with ANTs 2.2.0 ( Avants et al., 2008 , RRID:SCR_004757),
nd used as T1w-reference throughout the workflow. The T1w-
eference was then skull-stripped with a Nipype implementation
f the antsBrainExtraction.sh workflow (from ANTs), us-
ng OASIS30ANTs as the target template. Brain tissue segmenta-
ion of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter
GM) was performed on the brain-extracted T1w using fast (FSL
.0.9, RRID:SCR_002823, Zhang et al., 2001 ). Brain surfaces were re-
onstructed using recon-all (FreeSurfer 6.0.1, RRID:SCR_001847,
ale et al., 1999 ), and the brain mask estimated previously was refined
ith a custom variation of the method to reconcile ANTs-derived and
reeSurfer-derived segmentations of the cortical gray-matter of Mind-
oggle (RRID:SCR_002438, Klein et al., 2017 ). 
3 
For each of the up to 4 resting-state blood oxygen level-dependent
BOLD) runs found per subject (across all tasks and sessions), the fol-
owing preprocessing was performed. First, a reference volume and
ts skull-stripped version were generated using a custom methodol-
gy of fMRIPrep . A deformation field to correct for susceptibility dis-
ortions was estimated based on two echo-planar imaging references
ith opposing phase-encoding directions, using 3dQwarp ( Cox and
yde, 1997 ) (AFNI 20160207). Based on the estimated susceptibility
istortion, an unwarped BOLD reference was calculated for a more ac-
urate co-registration with the anatomical reference. The BOLD refer-
nce was then co-registered to the T1w reference using bbregister
FreeSurfer) which implements boundary-based registration ( Greve and
ischl, 2009 ). Co-registration was configured with nine degrees of free-
om to account for distortions remaining in the BOLD reference. Head-
otion parameters with respect to the BOLD reference (transformation
atrices, and six corresponding rotation and translation parameters)

re estimated before any spatiotemporal filtering using mcflirt (FSL
.0.9, Jenkinson et al., 2002 ). The BOLD time-series were resampled
nto their original, native space by applying a single, composite trans-
orm to correct for head-motion and susceptibility distortions. These re-
ampled BOLD time-series will be referred to as preprocessed BOLD in
he original space, or just preprocessed BOLD. 

Several confounding time-series were calculated based on the pre-
rocessed BOLD: framewise displacement (FD), the rate of change of
OLD signal across the brain at each frame (DVARS), and three region-
ise global signals. FD and DVARS are calculated for each functional

un, using the implementations in Nipype (following the definitions by
ower et al., 2014 ). The three global signals are extracted within the
SF, the WM, and the whole-brain masks. The head-motion estimates
alculated in the correction step were also placed within the correspond-
ng confounds file. The confound time series derived from head motion
stimates and global signals were expanded with the inclusion of tempo-
al derivatives and quadratic terms for each ( Satterthwaite et al., 2013 ).

All resamplings can be performed with a single interpolation step
y composing all the pertinent transformations (i.e., head-motion trans-
orm matrices, susceptibility distortion correction when available, and
o-registrations to anatomical spaces). Gridded (volumetric) resam-
lings were performed using antsApplyTransforms (ANTs), con-
gured with Lanczos interpolation to minimize the smoothing effects of
ther kernels ( Lanczos, 1964 ). 

Many internal operations of fMRIPrep use Nilearn 0.5.2
 Abraham et al., 2014 , RRID:SCR_001362), mostly within the functional
rocessing workflow. For more details of the pipeline, see the section
orresponding to workflows in fMRIPrep’s documentation . 

Further preprocessing was performed using a confound regression
rocedure that has been optimized to reduce the influence of subject
otion ( Ciric et al., 2017; Satterthwaite et al., 2013 ); preprocessing was

mplemented in XCPEngine 1.0 ( Ciric et al., 2018 ), a multi-modal toolkit
hat deploys processing instruments from frequently used software li-
raries, including FSL ( Jenkinson et al., 2012 ) and AFNI ( Cox, 1996 ).
urther documentation is available at https://xcpengine.readthedocs.io
nd https://github.com/PennBBL/xcpEngine . Functional timeseries
ere band-pass filtered to retain frequencies between 0.01 Hz and
.08 Hz. Data were demeaned, and linear and quadratic trends were
emoved. Confound regression was performed using a 36-parameter
odel; confounds included mean signal from the whole brain, white
atter, and CSF compartments, 6 motion parameters as well as their

emporal derivatives, quadratic terms, and the temporal derivatives of
he quadratic terms ( Satterthwaite et al., 2013 ). Prior to confound re-
ression, all confound parameters were band-pass filtered in a fashion
dentical to that applied to the original timeseries data, ensuring com-
arability of the signals in frequency content ( Hallquist et al., 2013 ).
otion censoring was applied by removing frames with FD > 0 . 2 mm or

tandardized DVARS > 2 . We followed Yeo and colleagues (2011) when
ossible, though we employed a few additional preprocessing steps to
inimize the effects of motion. To avoid variability in scan duration in-

https://www.fmriprep.readthedocs.io/en/latest/workflows.html
https://www.xcpengine.readthedocs.io
https://www.github.com/PennBBL/xcpEngine
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uencing results, the first 2 runs from each subject that met all inclusion
riteria were used as input to both partitioning algorithms. 

ata ‐driven community detection approach: Clustering algorithm 

For both partitions, we first systematically investigated the number
f communities, or the optimal k , that best describes cortical organiza-
ion in childhood (see Number of communities sections below). Based on
ur findings, and prior evidence that functional brain networks can be
ivided into 6–10 communities ( Beckmann et al., 2005; Smith et al.,
009; Urchs et al., 2019; Yeo et al., 2011 ), we chose k = 7 for our
ain analyses to facilitate comparison with the adult partition derived

n Yeo et al. (2011) . The clustering algorithm and the WSBM both at-
empt to group vertices or parcels into communities based on their pat-
erns of connectivity with the rest of the brain, but the extent of their
athematical definition and the level at which they operate varies. 

urface ‐based processing 

Following temporal filtering and confound regression, functional
ata were projected onto the surface using mri_vol2surf (FreeSurfer) and
ownsampled to fsaverage6 surface space (where the vertex spacing is
oughly 2 mm). Data were smoothed using a 4.8 mm full-width half-
aximum (FWHM) kernel, similarly to the adult dataset from which

he adult partition was derived ( Yeo et al., 2011 ). 

umber of communities 

We systematically varied the number of communities detected, from
 = 2 − 17 , and implemented the vertex-wise instability analysis from
eo et al. (2011) to examine the optimal 𝑘 for the child clustering par-
ition. Briefly, the instability analysis involves repeatedly and randomly
ividing the 74,846 vertices into two groups, and applying the cluster-
ng algorithm to each group separately. The parameters learned from
lustering the first group of vertices are then used to predict the clus-
ering results for the second set of vertices, and the agreement between
he prediction and clustering results of the second group of vertices mea-
ures the generalizability of the clustering results at that 𝑘 . The vertex
esampling was iterated 100 times at each 𝑘 , with a different random
plit of vertices into groups each time. All other clustering parameters
ere set the same as in the clustering algorithm, above. Less stability is
bserved with increasing number of estimated communities, which is an
xpected property, since the number of estimated communities enlarges
he solution space of the clustering problem. Lower values of instability
ndicate higher consistency across resamplings at a given 𝑘 , and thus
etter partition fit. 

lustering algorithm 

The clustering algorithm attempts to detect functionally coupled re-
ions and was implemented following Yeo et al. (2011) . Here we provide
 brief overview of the algorithm for clarity. Time-varying BOLD signals
ere extracted from each vertex on the surface. Connectivity between

ach vertex and 1175 evenly-spaced regions of interest (ROIs) was esti-
ated by calculating the Pearson correlation coefficient between their

imeseries and normalized. The resulting 74,846 x 1175 correlation ma-
rix was averaged across runs, and then binarized to keep the top 10%
f the correlations; the resulting connectivity profiles were averaged
cross subjects. The averaged connectivity profiles were clustered using
 mixture of von Mises-Fisher distributions ( Lashkari et al., 2010 ) with
 = 7 based on our previous results and for ease of comparison with
he adult partition. This approach modeled the 74,846 points of data
n a 1,174-dimensional hypersphere in a 1,175-dimensional space, and
ttempted to minimize the geodesic distances between points (i.e., at-
empted to group vertices with similar connectivity profiles to the 1174
OIs together in the same community). This procedure also means that
ertices were clustered based on their connectivity profiles rather than
heir absolute connectivity strength; at each iteration the algorithm at-
empted to maximize the agreement of connectivity profiles within a
4 
ommunity. The algorithm was iterated 1000 times with a different
andom initialization of vertices to communities each time, then the
est solution of those 1000 tries chosen based on the likelihood of
hat partition. The clustering algorithm was implemented using pub-
icly available code from Yeo and colleagues (2011) , using v0.17.0 at
ttps://github.com/ThomasYeoLab/CBIG . 

ncertainty in community assignment 

As has been done in prior work, we used the silhouette measure
 Rousseeuw, 1987 ), called confidence in Yeo et al. (2011) , as a vertex-
ise measure of uncertainty in community assignment. The silhouette
easure captures the similarity of a vertex’s timeseries to other vertices

ssigned to the same community, compared to the next most similar
ommunity. The silhouette for point 𝑖 is defined as: 

 𝑖 = 

𝑏 𝑖 − 𝑎 𝑖 

𝑚𝑎𝑥 ( 𝑎 𝑖 , 𝑏 𝑖 ) 
, (1)

here 𝑎 𝑖 is the average distance (correlation, in our case) from point
 to the other points in the same community as 𝑖 , and 𝑏 𝑖 is the mini-
um average distance from the 𝑖 th point to points in a different com-
unity (minimized over communities). The resulting measure ranges

rom -1 to 1, with higher values indicating greater confidence in com-
unity assignment. Negative values are unlikely, but possible, as the

ost function of the clustering algorithm is not equivalent to the silhou-
tte measure. We employ publicly released adult confidence maps from
eo et al. (2011) for comparison, and as these were estimated in fsaver-
ge5 space, we upsampled them to fsaverage6 space for comparison to
he clustering partition. 

odel ‐based community detection approach: Weighted stochastic block 

odel 

etwork construction 

Mean BOLD timeseries were extracted from a 400-region parcella-
ion ( Schaefer et al., 2018 ). We estimated the functional connectiv-
ty ( Friston, 2011 ) between any two brain regions by calculating the
roduct-moment correlation coefficient r ( Zalesky et al., 2012 ) between
he mean activity time series of region 𝑖 and the mean activity time
eries of region 𝑗 ( Biswal et al., 1995 ). Correlations were subsequently
 -to- z -transformed. We represented the 𝑛 × 𝑛 functional connectivity ma-
rix as a graph or network ( Bassett et al., 2018 ), in which regions were
epresented by network nodes, and in which the functional connectivity
etween region 𝑖 and region 𝑗 was represented by the network edge be-
ween node 𝑖 and node 𝑗. We used this encoding of the data as a network
o produce an undirected, signed and weighted adjacency matrix 𝐀 . Ad-
acency matrices were then averaged across the 2 runs, for consistency
ith the procedures employed in the data-driven approach. We note that
espite common use, averaging individual subject matrices to produce
 group-average adjacency matrix may result in a structure that is not
entral to the ensemble of individual matrices ( Simpson et al., 2012 ). 

eighted stochastic block model 

Following Aicher et al. (2015) , the weighted stochastic block model
laces each of n nodes of the adjacency matrix 𝐴 of subject 𝑓 into one
f 𝑘 communities, by maximizing the likelihood that each block of con-
ections between two communities is internally similar. In the classic
BM, the probability of edge existence is learned for each block (sys-
em). In the weighted SBM, the edge weight distribution parameterized
y 𝜇 and 𝜎 is learned for each block. For each subject, we maximize
he likelihood of a partition 𝑦 such that 𝜇 and 𝜎 parameterize the nor-
ally distributed probability of edge weights between nodes in commu-
ity 𝑖 and community 𝑗, where nodes in this case are parcels from the
chafer400 parcellation. The WSBM seeks to partition a subject’s brain
etwork such that nodes with similar patterns of connectivity to other
odes are grouped together, under the assumption that each commu-
ity’s set of edge weights can be modeled with a normal distribution

https://www.github.com/ThomasYeoLab/CBIG
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ith mu and sigma. This placement is accomplished by finding a net-
ork partition 𝑦 ∈ 𝑌 𝑛𝑥 1 where 𝑦 𝑖 ∈ 1 , 2 , … , 𝑘 and 𝑤 𝑖 denotes the mem-
ership of node 𝑖 . Following Aicher et al. (2015) , we model edge weights
ith an normal family distribution and discount the contribution of the

dge existence distribution ( Betzel et al., 2018b ). Then the generative
odel takes the following form: 

 ( 𝐴 |𝑦, 𝜇, 𝜎2 ) = 

𝑛 ∏
𝑖 =1 

𝑛 ∏
𝑗=1 

𝑒𝑥𝑝 ( 𝐴 𝑖,𝑗 ⋅
𝜇𝑦 𝑖 ,𝑦 𝑗 

𝜃2 
𝑦 𝑖 ,𝑦 𝑗 

− 

𝐴 

2 
𝑖,𝑗 

2 𝜎2 
𝑦 𝑖 ,𝑦 𝑗 

− 

𝜇2 
𝑦 𝑗 ,𝑦 𝑗 

𝜃2 
𝑦 𝑖 ,𝑦 𝑗 

) , (2)

here 𝜇 ∈ 𝑅 

𝑘𝑥𝑘 and 𝜎2 ∈ 𝑅 

𝑘𝑥𝑘 are model parameters, and 𝜇𝑦 𝑖 ,𝑦 𝑗 and 𝜎2 
𝑦 𝑖 ,𝑦 𝑗 

arameterize the weights of normally distributed connections between
ommunity 𝑦 𝑖 and community 𝑦 𝑗 . The quantity 𝐴 𝑖,𝑗 denotes the 𝑖, 𝑗th el-
ment of the network adjacency matrix 𝐴 . The quantity 𝑃 ( 𝐴 |𝑦, 𝜇, 𝜎2 ) is
he probability of generating the observed network 𝐴 given the param-
ters; this model is fit to 𝐴 to estimate the 𝑦, 𝜇 and 𝜎2 parameters. For
 given subject’s 𝑛 × 𝑛 functional brain network, we maximize the like-
ihood of the weighted stochastic block model using a variational Bayes
echnique described by ( Aicher et al., 2015 ) and implemented in MAT-
AB code freely available at https://aaronclauset.github.io/wsbm/ . We
epeated the optimization procedure 50 times for each subject, each time
nitializing the algorithm with a different set of parameters. We selected
 = 7 based on our goodness-of-fit results, as well as prior evidence that
unctional brain networks can be divided into 7 separate components
 Yeo et al., 2011 ) and to facilitate ease of comparison with our set of
 priori community assignments. The weighted stochastic block model
enerated a single maximum likelihood partition of regions into func-
ional communities for each subject. 

umber of communities 

We systematically varied the number of communities detected, from
 = 2 − 17 , and implemented analyses of goodness-of-fit to examine the
ptimal 𝑘 for the child WSBM partition. We first examined the log-
ikelihood of the WSBM, fit to the main dataset across values of 𝑘 for
ach subject, repeating the optimization procedure 30 times per subject
nd each time initializing the algorithm with a different set of param-
ters. Then, we calculated the log-likelihood of the consensus WSBM
artition at a given 𝑘 (derived from our main dataset) fit to the replica-
ion dataset. Finally, we examined the number of communities detected
t the group level when using the iterative consensus partitioning pro-
edure to derive a representative group WSBM partition at a given 𝑘 . 

onsensus partition algorithm 

To derive a representative consensus WSBM partition, we used an
terative consensus partitioning procedure ( Bassett et al., 2013 ). This
rocedure tabulates the co-occurrence of two regions being assigned to
he same community across all subjects, subtracts a null model of the
hance occurrence of two regions being assigned to the same commu-
ity, then uses a Louvain-like algorithm to maximize the modularity
f the co-occurrence matrix ( Jeub et al., 2011 ). This final step is iter-
ted n = 670 times, once for each subject in the sample. We relabeled the
ommunities in the representative consensus WSBM partition using the
ungarian algorithm for maximal overlap with the adult partition com-
unities ( Kuhn, 1955 ). Note that although the choice of 𝑘 constrains

he number of communities detected at the subject level, we observed
hat the number of communities detected at the group consensus level
an vary from the 𝑘 set at the subject level. 

ncertainty in community assignment 

As a parcel-wise measure of uncertainty in community assignment,
e used the proportion of inconsistent assignments across iterations of
ur consensus partitioning algorithm. Typically, the consensus partition-
ng algorithm will consistently assign parcels to the same community
cross iterations, however, in our case some parcels were inconsistently
ssigned to communities across iterations. In a supplemental analysis,
e also used the silhouette measure introduced above on the WSBM
5 
artition, using parcel timeseries and WSBM community assignments to
stimate the silhouette of each parcel. 

artition comparisons 

We used information-theoretic measures for clustering comparison
o compare the adult partition developed by Yeo and colleagues in 2011
2011) ) to the two estimated developmental partitions: namely, the nor-
alized mutual information and the normalized information distance

 Vinh et al., 2010 ). Permutation tests across vertices ( 𝑛 = 81 , 924 ) were
onducted to estimate a distribution and calculate a p -value. To com-
are activation and deactivation maps from the n-back task to specific
ommunities, we used measures of set similarity designed for binary
omparison, namely the Sørensen-Dice coefficient. All adult partition
omparisons were conducted using the publicly released 7-system par-
ition from Yeo et al. (2011) in fsaverage6 space. 

ncertainty across both developmental partitions 

To examine areas of high uncertainty in assignment across both par-
itions, we combined the variability in assignment measure from the

SBM with the confidence measure from the clustering algorithm. Per-
entages of inconsistent assignment in the iterative consensus parti-
ioning procedure were scaled to [0,1] and inverted before summing
ith confidence maps from the clustering partition. Additionally, we

xamined at the vertex resolution how many times a vertex changed as-
ignment between the adult partition, the clustering partition, and the
SBM partition (Supplemental Figure S7). This measure ranges simply

rom 1 to 3, as a vertex can be assigned at maximum to 3 different com-
unities across the 3 partitions. 

ask ‐evoked activity 

We used maps of task-evoked activity in the emotional n-back task
rom the ABCD Study ( Chaarani et al., 2021 ). The emotional n-back
as both 0-back (low working memory load) and 2-back (high work-
ng memory load) conditions. Comparison of the two conditions allows
or the assessment of activation specifically related to working mem-
ry. Each trial requires a motor response from the subject, specifying
hether the stimuli was seen 2 trials ago (in the 2-back condition),
r is a target stimuli for the block (0-back). Performance on the task
as calculated as 𝑑 ′ for the 0-back and 2-back ( z -transformed hit rate -
 -transformed false alarm rate). Following the recommended inclusion
riteria ( Hagler et al., 2019 ), subjects with an overall response accuracy
ess than 60% for the 0-back or 2-back blocks were excluded, to en-
ure that individuals who were not doing the task did not influence the
ctivation maps. Specifically, we used the 2-back versus 0-back group
verage-contrast, controlling for age, sex, scanner, and performance. 

uantification and statistical analysis 

For information-theoretic measures of partition similarity (normal-
zed mutual information and normalized information distance), we con-
ucted resampling permutation tests to estimate a distribution to calcu-
ate a p -value. We employed Kruskal-Wallis tests and post-hoc Wilcoxon
ank sum tests to test differences in uncertainty of community as-
ignments and differences in the contrast weights in our task activa-
ion analyses. We bootstrapped standard errors and confidence inter-
als for binary measures of set similarity (Sørensen-Dice coefficient)
sing the package boot with 1000 repetitions. We conducted all anal-
ses in R and MATLAB using custom code, including that available at
ttps://github.com/ThomasYeoLab/CBIG/tree/ master/stable_projects .

ata visualization 

Surfaces and partitions were shown on cortical surfaces generated by
reesurfer ( Dale et al., 1999 ), using fsbrain 0.3.0 and freesurferformats

https://www.aaronclauset.github.io/wsbm/
https://www.github.com/ThomasYeoLab/CBIG/tree/master/stable_projects
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.1.11. Connectivity matrices were visualized in MATLAB, all other fig-
res were produced using R ( R Core Team, 2013 ). 

ata availability 

We provide two freely available partitions (in
saverage6, fsLR, and MNI volumetric spaces), at
ttps://github.com/utooley/Tooley_2020_child_functional_comms/tree/
he ABCD dataset ( https://abcdstudy.org ) is freely available from
he NIMH Data Archive (NDA). The ABCD data used in this re-
ort came from the Fast Track data release. The raw data are
vailable at https://nda.nih.gov/edit_collection.html?id = 2573 .
ll other analysis code is available at
ttps://github.com/utooley/Tooley_2021_child_functional_comms/tree/
long with the two developmental partitions generated in this
tudy. Other toolboxes used in this project are available at
ttps://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects 
nd https://aaronclauset.github.io/wsbm . 

esults 

hildren show limbic community expansion and greater integration of 

omatomotor and language communities 

We first examined how cortical patterns of functional communities
iffered in middle childhood from patterns previously found in adults.
e used a well-established community detection algorithm, applied to

dults in Yeo et al. (2011) , to create a group-level developmental parti-
ion from vertex connectivity profiles ( Fig. 1 ). We investigated the sta-
ility of community partitions across different numbers of communities
ith a resampling approach to determine whether k = 7 was a reasonable

hoice. Local minima in instability indicate the number of communities
hat can stably estimated using the clustering algorithm; we observe
 marked increase in instability after 𝑘 = 7 ( Fig. 1 b). Though our pri-
ary goal was ease of comparison to the adult 7-community partition

n Yeo et al. (2011) , our findings of a local minimum at k = 7, as was
ound in an adult sample ( Yeo et al., 2011 ), suggests that 7 communi-
ies is an appropriate starting point for partitioning cortex in children. 

The resulting child clustering partition with 7 communities is shown
n Fig. 2 b. In Fig. 2 c, we show the allocation of cortex to communi-
ies in the clustering partition and a comparison to the adult partition.
n the clustering partition, more total surface area was assigned to the
imbic and visual communities than in the adult partition, and less to
he default and frontoparietal communities than in the adult partition.
his observation is suggestive of a relative expansion of limbic and vi-
ual territory, and contraction of default and frontoparietal territory, in
hildren relative to adults. 

To further probe the differences between the contours of children’s
unctional communities and those of adults, we investigated measures
f partition similarity and the specific brain regions that showed dif-
erences in community assignment. The clustering partition is signifi-
antly more similar to the adult partition than expected by chance: the
ormalized mutual information of the two partitions is 0 . 64 ( p < 0.001,
ermutation test), and the normalized information distance ( Vinh et al.,
010 ) is 0.36 ( p < 0.001, permutation test). Further, 39 . 53 % of vertices
ignoring the medial wall) have a different assignment in the clustering
artition than in the adult partition. Of these vertices, the majority of
witches were in assignment of (i) adult default system regions to the
imbic community in children ( 29 . 63 %), and of (ii) adult somatomotor
egions to the ventral attention community in children ( 23 . 8 %) ( Fig. 2 d).
 . 46 % of switches were from the frontoparietal to the default commu-
ity, and 8 . 63 % were from the ventral attention to the frontoparietal
ommunity. The ventral regions of the precentral (primary motor cor-
ex) and postcentral gyri (primary somatosensory cortex), regions that
ypically encode the face ( Weiss et al., 2013 ), are clustered with the ven-
6 
er/partitions . 

er/partitions , 

ral attention community, a fractionation that was previously observed
n the 17-community partition in adults in Yeo et al. (2011) . 

ncertainty in community assignment is high in transmodal regions 

When connectivity is distributed evenly in a similar pattern across
ommunities, the assignment of regions to communities will be uncer-
ain, whereas when connectivity is clearly segregated into differenti-
ted patterns, the assignment of regions to communities will be cer-
ain. Here we sought to understand where connectivity may not yet be
learly segregated in the child brain, and we therefore calculated the
ertainty in the assignment of regions to communities. We employed
he confidence measure used in Yeo et al. (2011) to index certainty in
ommunity assignment across vertices (see Methods); higher values of
onfidence are indicative of higher certainty in community assignment.
n the adult sample examined by Yeo et al. (2011) , areas of low con-
dence fall primarily along borders between communities, and some-
imes indicate where communities could be fractionated in a higher-
esolution partition ( Fig. 2 a). Similarly, areas of low confidence also
all along boundaries between communities in the clustering partition
 Fig. 2 b), but there are additional regions in the clustering partition
hat show low confidence in assignment in the posterior cingulate, pre-
uneus, and inferior parietal lobule (circled in Fig. 3 a and 3 b). Despite
ower confidence, the precuneus and posterior cingulate area maintain
imilar community assignment across both the adult partition and the
wo developmental partitions ( Fig. 2 b and 4 a-c), varying only in their
patial extent. Similarly to adults, areas of low confidence in children
eem to primarily indicate fuzzy delineations between communities, but
t is difficult to ascertain visually whether the certainty along boundaries
f higher-order communities is lower than the certainty along bound-
ries of primary sensory areas. For that, we turn to an investigation at
he level of functional systems. 

We asked whether fuzzy delineations of boundaries are distributed
roadly across association cortex in both childhood and adulthood, or
hether children show areas of undifferentiated connectivity primar-

ly within the limbic and somatomotor systems that are assigned dif-
erently than in adults. We quantified this by calculating the median
onfidence within each community in both the adult and child samples
 Fig. 3 c,d). In the adult sample examined in Yeo et al. (2011) , confi-
ence was highest in vertices assigned to the visual and somatomotor
ystems and slightly lower in vertices assigned to higher-order associa-
ion systems ( Fig. 3 c, 𝐻(6) = 21179 . 38 , 𝑝 < 2 × 10 −16 ). In particular, there
as lowest confidence in assignment in regions in the frontoparietal

all pairwise comparisons 𝑝 < 0 . 01 , Bonferroni corrected) and dorsal at-
ention systems (all pairwise comparisons significant except ventral at-
ention, 𝑝 < 0 . 01 , Bonferroni corrected). In our developmental sample,
onfidence was again highest in vertices assigned to the visual commu-
ity, with significantly lower confidence in vertices assigned to other
ommunities ( Fig. 3 d, 𝐻(6) = 25933 . 24 , 𝑝 < 2 × 10 −16 ). There was lowest
onfidence in assignment in regions assigned to higher-order association
ommunities, in particular, the dorsal attention (all pairwise compar-
sons 𝑝 < 0 . 01 , Bonferroni corrected), default (all pairwise comparisons
ignificant except dorsal attention 𝑝 < 0 . 01 , Bonferroni corrected), and
rontoparietal systems (all pairwise comparisons significant, 𝑝 < 0 . 01 ,
onferroni corrected). These results are robust to using the community
ssignments from the adult clustering partition instead of the child clus-
ering partition (see Figure S1a, 𝐻(6) = 28310 . 69 , 𝑝 < 2 × 10 −16 ), find-
ng again that confidence was highest in vertices assigned to the vi-
ual system, and lowest in frontoparietal (all pairwise comparisons
 < 0 . 01 , Bonferroni corrected), dorsal attention (all pairwise compar-
sons 𝑝 < 0 . 01 , Bonferroni corrected), and default (all pairwise compar-
sons except ventral attention 𝑝 < 0 . 01 , Bonferroni corrected). Note that
alues of confidence in the developmental sample are overall lower than
hose of the adult sample used in Yeo et al. (2011) , though we do not
onduct statistical tests comparing the two, as this difference could be
ue to other discrepancies between the adult data and the developmen-

https://www.github.com/utooley/Tooley_2021_child_functional_comms/tree/master/partitions
https://www.abcdstudy.org
https://www.nda.nih.gov/edit_collection.html?id=2573
https://www.github.com/utooley/Tooley_2021_child_functional_comms/tree/master/partitions
https://www.github.com/ThomasYeoLab/CBIG/tree/master/stable_projects
https://www.aaronclauset.github.io/wsbm/
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Fig. 1. Overview of methods. The adult partition of cortical regions into 7 communities ( Yeo et al., 2011 ) (inset) was compared to two developmental partitions: one 
generated using a data-driven clustering approach and one generated using a model-based WSBM approach. a. The data-driven clustering approach was developed 
by Yeo et al. Yeo et al. (2011) and attempts to cluster areas into communities based on their patterns of connectivity to the rest of the brain. b. Schematic of 
pipeline for generating the data-driven clustering partition. Vertex-wise surface data was extracted and correlation profiles across 1175 equally-spaced regions of 
interest (ROIs) were calculated for each vertex (average correlation profiles depicted). These profiles were then used as input to the clustering algorithm, which 
attempts to cluster vertices into 𝑘 = 7 communities. c. We investigated the stability of different numbers of communities ( 𝑘 ) using a resampling approach combined 
with the clustering algorithm (see Methods ). With an increasing number of estimated communities, we observe less stability, which is expected as the number of 
estimated communities enlarges the solution space of the clustering problem. Local minima indicate the number of communities that can be stably estimated using 
the clustering algorithm; we observe a marked increase in instability after 𝑘 = 7 (black line). d, The generative WSBM approach models interactions both within and 
between communities, attempting to partition communities such that nodes with similar patterns of connectivity are grouped together. e. Schematic of pipeline for 
generating the WSBM partition. Due to the computational limits of the WSBM algorithm, we took a common dimensionality-reduction step, and used a 400-region 
parcellation ( Schaefer et al., 2018 ) to downsample the data and extract regional timeseries. Correlations between regional timeseries were represented as a network; 
here we depict the average correlation matrix. These networks were then used as input to the WSBM, which attempts to group parcels into 𝑘 = 7 communities. f. 
To investigate the goodness-of-fit (log-likelihood) of different numbers of communities ( 𝑘 ) using the WSBM, we fit the WSBM to our main dataset and evaluated the 
goodness-of-fit in both the main (black) and replication (purple) datasets (left panel). We find a noted decrease in goodness-of-fit in the replication dataset around 
𝑘 = 5 − 6 , as generalizability decreases. We observed that although the choice of 𝑘 constrains the number of communities detected at the subject level, the number of 
communities detected at the group consensus level can vary from the 𝑘 set at the subject level; we observed a distinct plateau in the number of communities detected 
at the group level at 𝑘 = 7 (right panel). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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al data used here. Our results suggest that in the child brain, connectiv-
ty in higher-order association regions, particularly the dorsal attention,
efault, and frontoparietal communities, is not yet clearly segregated. 

We wondered whether areas of undifferentiated connectivity in chil-
ren were similar or different to those found in adults. We began by com-
aring the spatial distributions of confidence in the adult and child sam-
les. Summing the confidence maps, we found that areas of low confi-
ence are predominantly in higher-order association cortex in both chil-
ren and adults ( Fig. 3 e). Visual cortex and the somatomotor strip show
elatively high confidence in both samples. Examining the differences in
onfidence between adult and child samples, we found that overall, chil-
ren show lower confidence in community assignment ( Fig. 3 f). We did
ot strongly interpret this difference because it could arise from several
istinct differences between the adult data used by Yeo et al. (2011) and
7 
he child data used here. Note that visual areas show no differences in
onfidence between adult and child samples, as they are relatively high
onfidence in both adults and children. Overall, these results above sug-
est that children’s cortical patterns of connectivity may be less differ-
ntiated than those of the adult brain. 

When examining the distribution of certainty across communities,
e found that the dorsal attention community in particular had some

egions with very low values of confidence. Investigating these values,
e found that these regions were located along the border between the
isual and dorsal attention communities (see Supplemental Figure S2).
ome of these areas are assigned to the visual community in the adult
lustering partition (see negative values in the visual community in Sup-
lemental Figure S1). We observe the assignment of a coherent region
n the superior parietal lobule, adjacent to the intraparietal sulcus, to
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Fig. 2. Overview of partitions generated us- 

ing a data-driven clustering approach. a. 

The partition of cortical regions into 7 com- 
munities estimated by Yeo et al. (2011) by 
applying a clustering approach to adult neu- 
roimaging data. b. A partition estimated from 

developmental data using the same cluster- 
ing approach. Note the overall similarity be- 
tween the child partition and the adult par- 
tition (normalized mutual information (NMI) 
= 0 . 64 , 𝑝 < . 001 , permutation test). c. Surface 
area assigned to each community in the two 
partitions. d. Areas that were assigned to dif- 
ferent communities in the adult partition and 
the child partition. Switches in community as- 
signment from the adult partition to the child 
partition are shown in color. 
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he visual community in the child clustering partition. In the adult par-
ition, a smaller region in this area is assigned to the visual system. This
s also consistent with the increased surface area allocated to the visual
ommunity in the child clustering partition, compared to in the adult
artition (see Fig. 2 c), suggesting that these areas may be more tightly
inked to extrastriate cortex (area MT and anterior MT) in childhood
han in adulthood. 

ata ‐driven community assignments are highly stable across samples 

If children’s patterns of brain connectivity are simply more differ-
nt from each other (i.e., higher interindividual variability) than adult’s
atterns of brain connectivity are, then partitions derived from develop-
ental data might be less stable across samples. Therefore, we employed
 replication dataset of children from the Adolescent Brain and Cogni-
ive Development (ABCD) study to assess the reliability and generaliz-
bility of our findings. Identical preprocessing and clustering algorithm
mplementations were used on the replication dataset, drawn from two
BCD sites. Community assignments in the replication clustering parti-

ion are highly consistent with those generated using the original dataset
see Figure S4a and S4b). A total of 94 . 99 % vertices are assigned to the
ame community across both datasets, with 94.76% of vertices in the
ight hemisphere and 95.21% of vertices in the left hemisphere being
ssigned to the same community. Normalized mutual information (NMI)
f the two partitions is 0 . 88 , and normalized information distance is 0 . 12 .
hese results suggest that the cortical patterning of functional commu-
ities in middle childhood is stable, and reliably shows differences from
dult community organization. 
8 
hildren show less-solidified higher ‐order community interactions in 

ssociation cortex 

Using the data-driven approach, we observed that there were stable
nd reliable patterns of cortical community structure in middle child-
ood that differ from those established in adults. Notably, we found con-
iderable reapportionment of adult default system regions to the limbic
ommunity, as well somatomotor regions to the ventral attention com-
unity. This raises the question of the origins of these assignments–

s it due to changes in connectivity between these specific systems, or
roader differences in patterns of connectivity across all other functional
ommunities? To address this question, we turned to another commu-
ity detection approach, a generative model-based approach called the
eighted stochastic block model (WSBM), that differs from the data-
riven approach in several important ways. For one, it explicitly models
he interactions between communities. While the data-driven approach
odels patterns of connectivity and attempts to group regions with sim-

lar patterns together into a community, the model-based approach par-
itions cortex by maximizing the likelihood that each ”block ” of connec-
ions between two communities is internally similar and coherent. Addi-
ionally, using WSBM allows us to assess not just the reliability of these
ortical patterns of communities across approaches, but also employ a
ore biologically-motivated method with fewer motivating principles. 

We first examined whether cortical patterns of communities esti-
ated using the model-based approach resemble those found in adults

r those found using the data-driven approach in children. We used the
SBM to create a group-level developmental partition from average par-

el connectivity patterns ( Figure 1 ). To determine whether 7 communi-
ies was a reasonable choice when using the model-based approach, we
rst systematically investigated the goodness-of-fit of the WSBM across
ifferent numbers of communities ( 𝑘 ). When fitting the WSBM to our
ain dataset, we observe the goodness-of-fit steadily increases with in-
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Fig. 3. Confidence in community assignment using a data-driven clustering approach. a. Confidence maps estimated from an adult sample ( Yeo et al., 2011 ) 
using the silhouette method. This method measures the similarity of a given vertex’s timeseries to that of other vertices assigned to the same community, compared 
to the next most similar community (see Methods). For the purposes of visualization, negative silhouette values were set to 0. b. Confidence maps estimated from the 
developmental sample using the same method. For the purposes of visualization, negative silhouette values were set to 0. c. Average confidence in the adult sample 
within each of the systems in the adult partition. d. Average confidence in the developmental sample within each of the communities in the child clustering partition. 
Note the higher confidence in the visual community and relatively lower confidence in higher-order association communities, particularly the dorsal attention and 
default communities. e. Summed confidence in community assignments from adult and developmental samples. Dark brown indicates areas of low confidence in 
both adult and developmental samples. f. Difference in confidence maps between adult and developmental samples. Red indicates higher confidence in the adult 
sample, while blue indicates higher confidence in the child sample; these differences should be interpreted with caution, as there are other differences between the 
adult data and the developmental data used here. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 
article.) 

9 
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Fig. 4. Child partition generated using the model-based WSBM approach. a. The 7-community adult partition ( Yeo et al., 2011 ). Colors in panels a-c correspond 
to the communities shown in panel d. b. A partition estimated from developmental data by applying the clustering approach (see Fig 2 b). c. A partition estimated 
from developmental data by applying the WSBM approach. Note the high overall similarity to the adult partition (normalized mutal information (NMI) =0 . 58 , 𝑝 < 
. 001 , permutation-based testing). d. Surface area assigned to each community in the adult partition and WSBM partition. e. Areas that were assigned to different 
communities in the adult partition and the child WSBM partition. Switches in community assignment from the adult partition to the child partition are shown in 
color. 
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reasing 𝑘 ( Fig. 1 c, left panel, black). However, when calculating the
oodness-of-fit of the WSBM partition at a given 𝑘 on our replication
ataset, we observe a noted decrease in goodness-of-fit as 𝑘 increases
ast 𝑘 = 6 ( Fig. 1 c, left panel, purple). Furthermore, we examined the
umber of communities detected at the group consensus level using
he WSBM across different values of 𝑘 , and observe the longest distinct
lateau at 𝑘 = 7 , indicative of a stable group partition ( Aicher et al.,
015; Fortunato, 2010 ) ( Fig. 1 d, right panel). 

The resulting WSBM partition with 7 communities is shown in
ig. 4 c. In Fig. 4 d, we show the allocation of cortex to communities
n the WSBM partition and a comparison to the adult partition. In the

SBM partition, more total surface area was assigned to the default,
isual, and somatomotor communities than in the adult partition, and
ess to the attentional communities than in the adult partition. By visu-
lly comparing Figs. 4 a-c, we observed that the WSBM partition resulted
n a more diffuse, scattered pattern of community assignments in pre-
rontal cortex, suggesting that the variability in assignment seen in the
lustering partition in the assignment of adult default and somatomotor
egions to limbic and ventral attention communities, respectively, may
e broadly distributed across association regions of cortex rather than
solated to those specific systems. 
10 
To probe whether the pattern of functional communities estimated
n the WSBM partition differs from that of the adult partition in a consis-
ent fashion, we again examined the specific brain regions that showed
ifferences in community assignment. The WSBM partition is signifi-
antly more similar to the adult partition partition than expected by
hance: the normalized mutual information of the two partitions is 0 . 58
 𝑝 < . 001 , permutation test), and the normalized information distance is
 . 44 ( 𝑝 < . 001 , permutation test; see Fig. 4 c). Note that the WSBM par-
ition is more different from the adult clustering partition than is the
hild clustering partition. Further, 37 . 23 % of vertices (ignoring the me-
ial wall) have different assignments than in the adult partition. Of these
ertices, the majority of switches were in assignment of (i) adult ven-
ral attention system regions to the somatomotor community in children
 15 . 11 %), and of (ii) adult limbic regions to the default community in
hildren ( 9 . 98 %) ( Fig. 4 e). 9 . 18 % of switches were from the dorsal at-
ention to the visual community, 7 . 6 % were from the limbic to the fron-
oparietal community, and 7 . 52 % were from the frontoparietal to the
efault community. Visual inspection of Fig. 4 c demonstrates a reversal
f the pattern observed in the clustering partition, where face and head
reas of the somatomotor community were clustered with the ventral at-
ention community. In the WSBM partition, these regions, which include
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Fig. 5. Variability in community assignment using a model-based WSBM approach. a. Maps of variability in community assignment estimated from the 
developmental sample. Parcels that were inconsistently assigned to communities during optimizations of the WSBM consensus partition algorithm are shown in 
brown. The majority of parcels were consistently assigned to the same community across optimizations. b. Variability in community assignment within each of the 
communities in the child WSBM partition. Note that variability in parcel assignment predominates in the ventral attention and limbic communities. c. Areas of low 

certainty in community assignments across both developmental partitions, regions of low certainty are shown in dark sandstone. Low certainty across approaches is 
localized to cingulo-opercular regions, namely, the anterior insula and anterior cingulate. Percentage of inconsistent assignment in the WSBM partition is scaled to 
[0,1] and inverted, then summed with confidence values from the clustering partition scaled to [0,1]. Values close to zero show high certainty in both partitioning 
approaches. 
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he insula and parts of auditory cortex, are preferentially grouped with
he somatomotor community. The switches in community assignment
bserved in the WSBM partition somewhat recapitulate the switches in
een in the clustering partition, but suggest that while adult default and
entral attention systems regions do interact differently with the limbic
nd somatomotor communities (respectively) as seen in the clustering
artition, interactions between communities in higher-order association
ortex more broadly may be flexible in childhood. 

ncertainty in assignment is high in regions supporting attentional processes

Next, we sought to examine where interactions between communi-
ies might still be quite flexible and undifferentiated, reasoning that the
cattered pattern of community assignment in prefrontal areas might
e indicative of less-solidified community boundaries in those areas.
e employed a measure of variability in community assignment de-

ived from the consensus partitioning algorithm (described in Methods:

onsensus partition algorithm ) to index uncertainty in community assign-
ent. The majority of parcels were assigned to the same community

cross optimizations of the consensus partitioning algorithm, as we ex-
ected, but 48% of parcels were not consistently assigned across opti-
izations. We used the proportion of inconsistent community assign-
ents across optimizations to index uncertainty in community assign-
ent. As in the clustering partition, areas of high variability in commu-
ity assignment are predominantly in higher-order association cortex,
ound in rostrolateral prefrontal cortex, anterior cingulate, and insula
 Fig. 5 a). These results suggest that in these brain regions, patterns of
onnectivity are not clearly segregated, and interactions between com-
unities may still be quite flexible. 

We next turned to investigation at the level of cognitive systems,
nd asked whether areas of low certainty are distributed broadly across
ssociation cortex, or whether they are confined to specific communi-
ies. To quantify whether uncertainty in community assignment var-
ed in a systematic manner across the cortex, we calculated the per-
entage of parcels within each community that were inconsistently as-
11 
igned ( Fig. 5 b). Variability in assignment was low in regions assigned
o primary sensory systems, and varied only to any large extent in
igher-order association regions ( 𝐻(6) = 198 . 34 , 𝑝 < 2 × 10 16 ). In partic-
lar, there was the highest variability in assignment in regions in the
entral attention (all pairwise comparisons, 𝑝 < 0 . 01 , Bonferroni cor-
ected) and limbic (all pairwise comparisons 𝑝 < 0 . 01 , Bonferroni cor-
ected) communities. These results are robust to using the system as-
ignments from the adult clustering partition instead of the child WSBM
ommunities; we find again that the highest variability in assignment
as in the ventral attention community (Supplemental Figure S1b,

 𝐻(6) = 83 . 68 , 𝑝 < 2 × 10 16 ), all pairwise comparisons except frontopari-
tal, 𝑝 < 0 . 03 ), though areas defined as part of the frontoparietal system
n the adult clustering partition also show high variability in assignment
pairwise comparisons with visual, somatomotor, and default communi-
ies, 𝑝 < 0 . 01 , Bonferroni corrected). Taken together with findings from
he data-driven approach, our findings suggest that complex undifferen-
iated connectivity patterns are primarily present in middle childhood in
igher-order areas, particularly those supporting attentional processes. 

odel ‐based community assignments are moderately stable across samples 

To determine the reliability and generalizability of our findings, we
epeated our WSBM analyses using a replication dataset of children from
BCD. Identical preprocessing and WSBM implementations were used
n the replication dataset drawn from two ABCD sites. Community as-
ignments in the child WSBM partition generated from the replication
ataset are somewhat consistent with those generated using the origi-
al dataset (see Figure S4a and S4b). A total of 74.62% of parcels are
ssigned to the same community across both datasets, with 73.63% of
arcels in the right hemisphere and 75.62% of parcels in the left hemi-
phere being assigned to the same community. Normalized mutual in-
ormation of the two partitions is 0 . 84 , and normalized information dis-
ance is 0 . 17 . These results suggest that in middle childhood interac-
ions between functional communities are slightly less stable than the
road cortical patterning of connectivity detected by the data-driven
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pproach. Much of cortex outside prefrontal areas, however, especially
rimary sensory areas, has clearly-defined stable interactions between
ommunities, which are reliably detectable across samples and across
pproaches. 

cross both approaches, uncertainty in community assignment is high in 

ingulo ‐opercular regions 

Finally, we sought to determine where complex undifferentiated con-
ectivity patterns might be present in the child brain, comprising areas
here connectivity is not clearly segregated and where interactions be-

ween communities remain flexible. Thus, we examined areas of high
ncertainty in community assignment across both community detection
pproaches we employed. We combined the confidence measure from
he data-driven community detection approach and the variability mea-
ure from the model-based approach to examine the overlap of areas
here it was difficult to assign a community identity. The percentage
f inconsistent assignments in the WSBM partition was scaled to [0,1]
nd inverted, and confidence values from the clustering partition were
caled to [0,1]; then the two estimates were summed ( Fig. 5 c). Insular
nd anterior cingulate areas show low certainty in both approaches, sug-
esting that during middle childhood, these regions may still be flexibly
ssociated with several functional communities. 

We found a similar spatial distribution of regions of low confidence
cross approaches when using the silhouette measure to index uncer-
ainty in community assignment in the WSBM partition. We previously
sed the silhouette measure when examining uncertainty in assignment
n the child clustering partition. Higher values of the silhouette mea-
ure are indicative of higher confidence in community assignment, while
ower values of confidence are indicative of lower confidence. Regions
f low confidence in the WSBM partition were primarily located in the
nsula, lateral prefrontal areas, and cingulate (Supplemental Figure 6a).
egions of low confidence using the silhouette measure covered more

erritory than regions of high variability in community assignment us-
ng the measure derived from optimizations of the consensus community
lgorithm (compare Fig. 5 a to Supplemental Figure 6a). Insula and ante-
ior cingulate areas again showed low confidence in assignment across
oth partitioning approaches, though additional regions in the parahip-
ocampal and entorhinal cortex also showed low confidence across par-
itioning approaches when using the silhouette measure of confidence
Supplemental Figure S7b). We qualitatively observed that posterior re-
ions seemed to have more consistently similar community assignments
cross partitions. To quantify this observation, we calculated for each
ertex the number of different communities it was assigned to across
he three partitions. We observed that anterior higher-order association
egions tended to vary in assignment more across the three partitions
Supplemental Figure S7b), suggesting that these transmodal areas do
ot yet have solidified community identities in middle childhood. 

he clustering partition and the adult partition capture functional 

rganization during task performance well 

Functional communities have been shown to comprise brain regions
hat are co-activated during performance of specific cognitive tasks
 Gratton et al., 2018; Uddin et al., 2019 ). In the ABCD study, three
asks were collected: an inhibitory control task (stop-signal), a reward
rocessing task (monetary incentive delay), and a working memory (n-
ack) task ( Chaarani et al., 2021 ). The n-back task effectively local-
zes both the frontoparietal community (activity greater than baseline),
nd the default community (activity less than baseline) ( Chaarani et al.,
021 ). No tasks specifically localized sensory, motor, or attention com-
unities. 

rontoparietal community 

If the frontoparietal community simply comprises different spatial
erritory in middle childhood than in adulthood, we would expect to
12 
ee the differences in the topography of the frontoparietal community
ound in our developmental partitions reflected in the spatial extent of
ctivation during the n-back task. To examine whether this indeed is
he case, we thresholded the task activation maps to retain only the
ighest 20% of the contrast weights ( Fig. 6 b), and compared these to
he frontoparietal communities in each partition. Task activation in the
-back versus 0-back contrast of the n-back is shown in Fig. 6 a. The
lustering partition and the adult partition show equally good corre-
pondence to task activation in the n-back task (clustering partition
ørensen-Dice coefficient = 0 . 8052 ± 0 . 001(0 . 8025 − 0 . 808) , adult parti-
ion Sørensen-Dice coefficient = 0 . 8078 ± 0 . 001(0 . 8051 − 0 . 8105) ), with
he WSBM partition doing worse in comparison (Sørensen-Dice coef-
cient = 0 . 7445 ± 0 . 001(0 . 7416 − 0 . 7473) ). This set of findings suggests
hat both the clustering partition and adult partition capture commu-
ity structure that corresponds well to task activity. 

We next sought to investigate whether brain areas that are most
trongly involved in working memory are well-captured by the fron-
oparietal community in our developmental partitions. To do so, we ex-
mined the positive contrast weights, quantifying which partition had
he strongest activation within the frontoparietal community during the
ognitively demanding working memory portion of the task ( Fig. 6 c).
e found that the adult partition had the strongest positive activa-

ion ( 𝑀 = 0 . 38 , 𝑆𝐷 = 0 . 24 ), with the clustering partition also showing
trongly positive contrast weights ( 𝑀 = 0 . 32 , 𝑆𝐷 = 0 . 20 ) and the WSBM
artition showing the least positive task activation ( 𝑀 = 0 . 27 , 𝑆𝐷 =
 . 23 , Kruskal-Wallis test, 𝐻(2) = 740 . 63 , 𝑝 < 2 × 10 −16 , all pairwise com-
arisons were significant, 𝑝 < 2 × 10 −16 ). Overall, these analyses of task
ctivity suggest that the adult clustering partition corresponds best to
ask-evoked activity during the n-back task, though the child clustering
artition also corresponds well. 

efault community 

Next, we turned to areas of deactivation during the n-back task,
xamining whether differences in the topography of the default com-
unity found in our developmental partitions were reflected in the

patial extent of deactivation during the n-back task. We thresholded
he task activation maps to retain only the lowest 20% of contrast
eights ( Fig. 6 b), and compared these to the default communities in

ach partition. The clustering partition shows the best correspondence
o deactivation in the n-back task (Sørensen-Dice coefficient = 0 . 7273 ±
 . 001(0 . 7248 − 0 . 7299 )), with the adult partition also showing correspon-
ence (Sørensen-Dice coefficient = 0 . 6779 ± 0 . 001(0 . 6753 − 0 . 6802 )) and
he WSBM partition shows the worst performance (Sørensen-Dice coeffi-
ient = 0 . 6496 ± 0 . 001(0 . 6473 − 0 . 6518) ). This set of findings suggests that
he clustering partition captures community structure that corresponds
est to deactivation during tasks. 

We next investigated whether brain areas that are deactivated dur-
ng the cognitively-undemanding portion of the n-back task are well-
aptured by the default community in our developmental partitions. We
xamined the negative contrast weights within the default community
f each partition, to quantify which partition had the strongest deacti-
ation during the cognitively undemanding 0-back portion of the task
 Fig. 6 d). We found that again, the clustering partition had the strongest
eactivation ( 𝑀 = −0 . 23 , 𝑆𝐷 = 0 . 19 ), with the adult partition also show-
ng strongly negative contrast weights ( 𝑀 = −0 . 20 , 𝑆𝐷 = 0 . 14 ) and the

SBM partition showing the least negative task deactivation ( 𝑀 =
0 . 17 , 𝑆𝐷 = 0 . 12 , Kruskal-Wallis test, ( 𝐻(2) = 296 . 67 , 𝑝 < 2 × 10 −16 ), all
airwise comparisons significant, 𝑝 < 0 . 001 ). This set of findings again
uggests that the clustering partition captures community structure that
orresponds best to deactivation during tasks. 

iscussion 

Does the architecture of children’s functional brain networks dif-
er from that of adults? Using a data-driven community detection ap-
roach, we found that sensory and motor communities resembled those
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Fig. 6. Overlap between task activation and communities in the estimated partitions. a. Contrast of 2-back versus 0-back in the emotional n-back task, 
controlling for age, sex, scanner, and performance. b. Overlap of highest 20% of contrast weights with the frontoparietal community in each of the three partitions. 
Higher Sørensen-Dice coefficient indicates better correspondence. c. Positive task contrast weights within the frontoparietal community in each of the three partitions; 
adult partition shows significantly stronger positive activation than the clustering partition and WSBM partition ( 𝐻(2) = 740 . 63 , 𝑝 < 2 × 10 −16 ). d. Overlap of lowest 
20% of contrast weights with the default community in each of the three partitions. Higher Sørensen-Dice coefficient indicates better correspondence. e. Negative 
task contrast weights within the default community in each of the three partitions; clustering partition shows significantly stronger negative deactivation than the 
adult partition and WSBM partition ( 𝑝 < 0 . 001 ). 
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f adults, but the limbic community was expanded into areas typically
ssigned the default system in adults, and ventral somatomotor areas
ere assigned to the ventral attention community and clustered with

anguage-related brain regions. To further probe the interactions be-
ween communities, we turned to a model-based approach called the
eighted stochastic block model (WSBM). We found a diffuse, scattered
attern of community assignments in prefrontal cortex, perhaps indica-
ive of broadly less-solidified higher-order community interactions and
oundaries in children of this age, and again found limbic representation
n lateral prefrontal cortex not seen in adults. Across both approaches,
he greatest uncertainty in algorithmic assignment of regions to com-
13 
unities was localized to the dorsal and ventral attention communi-
ies, including cingulo-opercular regions. Replication in another dataset
ielded consistent community assignments for both methods. Activation
nd deactivation patterns during a working memory task showed that
he clustering partition, and the adult partition, captured functional or-
anization in middle childhood well. 

The relative expansion of limbic spatial territory in the developmen-
al clustering partition compared to the adult partition is suggestive of
 higher importance of limbic circuitry in children ( Gee et al., 2013 ),
nd potentially consistent with compression of limbic territory as emo-
ion regulation abilities develop ( Pollak et al., 2019; Zimmer-Gembeck
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nd Skinner, 2011 ). It is worth noting that while we focus on the adult
artition estimated by Yeo et al. (2011) , many if not all adult parti-
ions display a hub of the default community in medial prefrontal cor-
ex (e.g., Power et al., 2011; Uddin et al., 2019 ). We also observe some
imbic community representation in lateral prefrontal cortex in the de-
elopmental WSBM partition, which is not typically observed in adult
artitions. 

Variation in transmodal association cortex 

We find that community assignments in higher-order association cor-
ex differ the most across approaches. This pattern is consistent with the
low structural development of association cortex, reflected in a pro-
onged course of thinning and myelination ( Brown and Jernigan, 2012;
iller et al., 2012; Mills et al., 2016; Whitaker et al., 2016 ), and with

revious findings in children of this age, showing similar community
oundaries in primary sensory areas as adults ( Marek et al., 2019 ). It
s also consistent with the finding that, through adolescence and into
dulthood, community assignment remains most variable across individ-
als in association cortex ( Cui et al., 2020; Gratton et al., 2018; Seitzman
t al., 2019 ). In prefrontal regions of the child clustering partition, we
bserve substantial changes in assignment between children and adults
n frontoparietal, default, and limbic communities, perhaps indicative
f unsolidified community assignments in these regions, consistent with
vidence that in adults interindividual variability is highest in these ar-
as ( Buckner and Krienen, 2013; Mueller et al., 2013 ). Another indica-
ion of increased flexibility in these areas is the consistency of commu-
ity assignments across datasets: while the clustering approach yields an
lmost identical partition in a replication dataset, the WSBM approach
hows some differences in assignment, primarily in prefrontal cortex, in
he limbic, frontoparietal, and attentional communities. 

Even within association cortex, we observe variability in the extent
o which children’s assignments look like adults. We see gradients from
ow to high consistency along the posterior-anterior and medial-lateral
xes, with posterior medial regions showing the most consistent com-
unity assignments across partitions. In both developmental partitions,

he dorsal attention community aligns well with the adult definition, and
ith known anatomy, encompassing the frontal eye fields and superior
arietal lobule ( Corbetta and Shulman, 2002 ). The posterior midline
ubs of the default community, the precuneus and posterior cingulate,
aintain similar community assignment across the adult partition and

oth developmental partitions. This posterior hub of the default com-
unity plays a mature role even in infant brain networks ( Gao et al.,
009 ), and thus its adult-like community assignment in middle child-
ood and its strong deactivation during the working memory task may
e unsurprising evidence for maturity. The evidence for earlier maturity
f posterior default hubs, relative to anterior hubs, is mixed, however,
s children also show lower confidence in the precuneus and posterior
ingulate than adults. In the developmental clustering partition, the ven-
ral aspects of the somatomotor community, which encode the tongue
nd head ( Weiss et al., 2013 ), are clustered with the ventral attention
ommunity and language-related brain regions, suggestive that, in chil-
ren, language processes may be more integrated with motor regions
nvolved in the production of language as expertise continues to be built
 Berman, 2004 ). Similarly, fractionation of the somatomotor community
nto a set of regions encoding the tongue and head clustered with parts
f auditory cortex, was previously observed in the 17-community solu-
ion in the adult clustering partition derived by Yeo et al. (2011) . In the

SBM partition, the ventral aspects of the somatomotor community are
ut part of an expanded somatomotor community, which extends again
o cover language-related brain regions, covering similar territory to the
entral attention community in the clustering partition. It is also possi-
le that the topographic arrangement of the community boundaries in
his area of the brain arises simply from the proximity of these regions
n volumetric space, as there is some possibility of blurring across sulci.

We focused specifically on localizing the frontoparietal and default
ommunities when probing the relationship between children’s commu-
ity topography and their patterns of task activity, as we were con-
14 
trained to the limited set of tasks collected in the full ABCD sample
 Chaarani et al., 2021 ). Despite the variation in community assignment
e observed in transmodal association cortex, it seems that both the
dult partition by Yeo et al. (2011) and the developmental clustering
artition align well with patterns of functional organization as indi-
ated by task activity. This is somewhat unsurprising, as the default
ommunity in particular shows some evidence for maturity in posterior
reas, and has been shown to be present even in infancy ( Gao et al.,
009 ), and the posterior hubs of the default community are consistent
cross the adult and child clustering partitions. The poor performance
f the WSBM partition, however, is particularly notable when examin-
ng the frontoparietal community results: there is a clear lack of overlap
etween the frontoparietal community in the WSBM partition and the
reas of high task activation. These results suggest that the flexible in-
eractions between higher-order communities at rest–as implied by the
iffuse, scattered community assignments in lateral prefrontal cortex–
ay ”firm up ” in the context of a cognitively demanding task, when

hildren shows patterns of functional brain activity that are more adult-
ike; prior work has shown that functional community organization re-
onfigures during task performance ( Salehi et al., 2020 ). To stringently
est these partitions, however, ideally we would use several different
asks that tapped the cognitive functions subserved by several sets of
ommunities that show differences in assignment (e.g., limbic, ventral
ttention), and this was not possible within the scope of tasks collected
n the ABCD sample. 

Algorithmic uncertainty in community assignment 

Across both partitioning approaches, areas of highest uncertainty
re located in dorsal and ventral attention communities. In the de-
elopmental clustering partition, regions assigned to the dorsal atten-
ion community show the highest uncertainty, while in the WSBM par-
ition, regions assigned to the ventral attention community show the
ighest uncertainty, indicative of still-maturing attentional processes in
iddle childhood ( Akshoomoff et al., 2014; Luna, 2009 ). Specifically,

he anterior insula and anterior cingulate cortex, core components of
he midcingulo-insular or ”salience ” community ( Uddin et al., 2019 ),
how high uncertainty across both approaches. These brain areas are
nvolved in the detection of relevant environmental stimuli (hence the
erm ”salience ”) and flexible switching between other large-scale com-
unities ( Dosenbach et al., 2007; Menon and Uddin, 2010 ). Recent
ork in adults demonstrates that these regions show altered connectiv-

ty in response to recent experience ( Newbold et al., 2020 ), suggesting
hat they play a key role in flexibly modulating communication with
ther large-scale communities even in adulthood. 

High uncertainty in attention communities may also reflect devel-
ping interactions with visual regions. In the developmental clustering
artition, the areas of overall lowest confidence are along the border
etween the visual and dorsal attention communities. This pattern sug-
ests the protracted development of higher-order visual cortex in re-
ation to dorsal attentional circuitry, and is consistent with the slight
ncrease in surface area allocated to the visual community in the de-
elopmental clustering partition compared to the adult clustering par-
ition. We observe the assignment of a coherent region in the superior
arietal lobule, adjacent to the intraparietal sulcus, to the visual com-
unity in the child clustering partition. This area is typically involved in
erception of space, spatially-coordinated movements, and magnitude
 Hubbard et al., 2005 ). In the adult partition, a smaller region in the
uperior parietal lobule is assigned to the visual system, suggesting that
n expanded part of this area may be more tightly linked to extrastri-
te cortex (area MT and anterior MT) in middle childhood ( Yeo et al.,
011 ). 

Methodological considerations 

We first employed a well-established data-driven clustering ap-
roach developed by Yeo et al. (2011) , then used the model-based gen-
rative WSBM ( Aicher et al., 2015 ) to further probe interactions be-
ween communities. The two approaches are both similar and distinct.
hey are similar in that they both attempt to group regions with simi-



U.A. Tooley, D.S. Bassett and A.P. Mackey NeuroImage 247 (2022) 118843 

l  

W  

o  

w  

i  

s  

o  

n  

T  

b  

o  

t  

m  

o  

d
 

a  

t  

w  

T  

o  

t  

c  

n  

o  

c  

c  

o  

l  

o  

r  

m
t  

b  

c  

v  

o  

e

 

w  

e  

p  

h  

c  

t  

v  

p  

p  

f  

P  

w  

c  

o  

r  

v  

l  

t  

fi  

a  

d  

t  

p  

s  

n  

B  

d  

t  

t  

r  

p  

p  

h  

w  

w  

f  

F  

w  

a  

v  

t  

c  

d  

b

 

c  

t  

e  

t  

a  

c  

w  

t  

a  

t  

a  

t  

t  

p  

2
 

o  

y  

c  

d  

d  

t  

p  

o  

q  

a  

t  

t  

s  

2  

f  

m  

a  

c  

b  

i  

t  

a  

n  

s  

n  

p  

w  

u  

a  

i  
ar brain-wide patterns of functional connectivity into communities. The
SBM in particular can capture both modular and non-modular types

f community structure, with its ability to detect a diverse set of net-
ork architectures. The WSBM bears more resemblance to the cluster-

ng algorithm than do methods like modularity maximization, which
imply seek to maximize connectivity within communities, irrespective
f similarities and differences in regional connections between commu-
ities. However, the two approaches also have important differences.
he WSBM has a precise motivating approach, assuming that nodes can
e partitioned such that the distribution of edge weights between sets
f communities is governed by parameterized generative processes, and
hat the parameterization of these processes depends only on the com-
unities to which nodes are assigned. The clustering algorithm, on the

ther hand, uses a mixture model to cluster regions in a complex high-
imensional space. 

We followed Yeo and colleagues (2011) for the clustering approach
nd thresholded subject connectivity profiles at 10% density (i.e., re-
ained only the most positive 10% of connections), while in the WSBM
e were able to retain all edge weights, both negative and positive.
his difference implies that the clustering method may be more reliant
n strong edges that occur with high frequency across subjects, while
he WSBM explicitly groups all nodes into communities with similar
onnectivity patterns. If weak or negative edges are more variable or
oisier than strong edges, the prevalence of weak edges in the unthresh-
lded WSBM approach may account for the diffuse, scattered pattern of
ommunity assignments seen in the child WSBM partition in prefrontal
ortex. This possibility is also consistent with the pattern observed in
ur replication dataset: when using the clustering approach, which re-
ies on only the strongest connections, we find a very consistent pattern
f community assignments, but when using the WSBM, which incorpo-
ates a range of connection strengths, we find more variability in assign-
ents in lateral prefrontal cortex. This difference between approaches–

he clustering approach being driven by strong edges, and the WSBM
eing driven by all edges–may explain the high reproducibility of the
lustering approach, but might also sacrifice sensitivity to individual
ariation, as a growing literature has suggested that middling strength
r weak edges best reflect individual differences in cognition ( Bassett
t al., 2012; Cole et al., 2012 ). 

Limitations 

A few limitations of this study should be noted. Most importantly,
e do not know ground truth: we are not able to validate our in vivo

stimates of functional network community structure with histological
ediatric data. Pediatric ex vivo data are thankfully scarce, but could be
elpful in determining which of our two parcellations is most similar to
ytoarchitecture or myeloarchitecture. For example, in the WSBM par-
ition but not in the child clustering partition, we observe a patch of the
entral attention community in middle frontal gyrus that resembles a
attern seen in the adult partition. Histology work in adults confirms the
resence of a patch of cortex that is cytoarchitectonically differentiated
rom the surrounding areas, with an expanded layer IV ( Petrides and
andya, 1999 ). Relatedly, we cannot use localizer tasks to determine
hich partition better matches task activation for each community be-

ause the ABCD study only includes a few tasks ( Casey et al., 2018 ). Sec-
nd, motion artifact remains a challenging confound in studies of neu-
odevelopment. In addition to rigorous quality assurance protocols and
alidated image preprocessing to reduce the impact of motion, we de-
iberately examined only a subsample of low-motion participants. While
his approach mitigates the possible impact of motion artifact on our
ndings, it may have reduced the generalizability of our sample. Third,
lthough imaging techniques have progressed considerably in the last
ecade, there is still low signal to noise ratio (SNR) in orbitofrontal cor-
ex and in the temporal pole in the child dataset. An analysis of the
atterns of SNR showed that community boundaries were not drawn
olely based on SNR, giving us more confidence that functional commu-
ities reflect neural organization and not simply acquisition parameters.
roadly, SNR patterns in the child dataset were similar those in the adult
15 
ataset used in Yeo et al. (2011) , but because the acquisition parame-
ers were not identical, it is possible that SNR had different effects on
he child and the adult datasets ( Holmes et al., 2015 ). This leads to a
elated limitation, which is that differences between the developmental
artitions and the adult partition might be influenced by acquisition or
reprocessing choices. Advances in scan acquisition and preprocessing
ave occurred in the last decade, and the child dataset was not collected
ith identical parameters to those used by Yeo et al. (2011) . Although
e matched their preprocessing to the extent possible, we employed a

ew additional preprocessing steps to minimize the effects of motion.
inally, due to computational limitations of the model-based approach,
e took a dimensionality-reduction step prior to employing the WSBM,
nd used a parcellation to downsample the data, rather than using full
ertex-wise data. This was a necessary step to make the computations of
he WSBM tractable; however, true community boundaries might not be
aptured if they cut through parcels, and thus differences between the
evelopmental clustering partition and the WSBM partition may have
een influenced by the resolution of the input data. 

Broader implications and future directions 

Our work builds on prior literature in adults showing that cortex
an be divided into reproducible group-average functional communi-
ies ( Power et al., 2011; Uddin et al., 2019; Yeo et al., 2011 ). Studies
xamining functional brain networks typically must choose a partition
o apply to characterize their results at the mesoscale or regional level,
nd we show that a commonly used adult partition may not accurately
apture the community structure of children’s brain networks. Instead,
e generate two new developmental partitions that can be used for fu-

ure analyses examining functional brain networks in children of this
ge. While there is a growing movement towards individualized func-
ional communities, group-level partitions are still widely used, as they
llow researchers to easily compare results across participants without
he confound of differences in the size or number of communities. Fur-
her, individualized approaches typically require large amounts of data
er individual ( Dworetsky et al., 2020; Kong et al., 2018; Wang et al.,
015 ), and thus may not always be feasible in developmental studies. 

Many important questions remain. First, how does the architecture
f children’s brain networks change as they mature? Data collected from
ounger children will enable us to examine how functional network ar-
hitecture develops prior to age 9, and future work with longitudinal
ata from the ABCD study will allow us to examine the trajectory of
evelopmental change during the dynamic period of adolescence, and
o track how community boundaries shift and stabilize during this time
eriod. Second, what is the cognitive significance of different patterns
f community structure in childhood? Answering this question will re-
uire well-designed measures of cognition (see Taylor et al. (2020) for
n examination of the reliability of the main cognitive assessment tool in
he ABCD study). Recent work with the ABCD sample has revealed that
he true effect sizes of brain-cognition relationships in this sample are
maller than would be expected based on prior literature ( Marek et al.,
020 ), but some studies have shown relationships between variation in
unctional community topography and cognition ( Cui et al., 2020; Seitz-
an et al., 2019 ). Third, to what extent are the communities we observe
 result of spatial constraints, and how does the distance-dependence of
ommunity structure vary across the cortex? The brain is a spatially em-
edded system, and investigations in adults have shown that account-
ng for the distance-dependence of brain network structure subtly alters
he communities detected ( Esfahlani et al., 2020 ), with more marked
lterations observed in structural communities ( Betzel et al., 2017 ). Fi-
ally, are children’s brains simply less well-captured by partitions into
eparate communities than adults brains? A group-level partition may
ot be as useful in children as in adults if children’s brains are sim-
ly more variable than adults, and if some regions of cortex are not
ell-captured by a single community assignment. Our examination of
ncertainty in community assignment suggests that capturing this vari-
bility is important, and that some brain regions are still highly flexible
n middle childhood. Prioritizing methods that estimate the uncertainty
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nd variation in community assignment, such as soft partitioning ap-
roaches that assign weighted probabilities of community assignment
o each vertex (e.g., Cui et al. (2020) ; Dworetsky et al. (2020) ), will en-
ble us to test whether functional brain network architecture becomes
ore solidified as children grow up. 

In sum, this work emphasizes the utility of approaches that capture
ariability and uncertainty in brain network organization. Our findings
uggest that one key developmental process might be increasing solid-
ty of brain network architecture as children develop, and set the stage
or both theory change and insight into the protracted period of human
hildhood. These results advance our knowledge about the organiza-
ion of children’s brains, suggesting a greater representation of regions
nvolved in emotion processing, greater integration of language and so-
atomotor systems, and more uncertainty in the assignment of associ-

tion cortex to communities relative to adults. These findings broadly
lign with differences in the mental lives of children and adults, and
ith theories about enhanced plasticity in childhood. 

The ABCD data repository grows and changes over time. The ABCD
ata used in this report came from the Fast Track data release. The raw
ata are available at https://nda.nih.gov/edit_collection.html?id = 2573 .
nstructions on how to create a NDA study are available at https://data-
rchive.nimh.nih.gov/training/modules/study.html . 
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